If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+12a+4=0
a = 1; b = 12; c = +4;
Δ = b2-4ac
Δ = 122-4·1·4
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-8\sqrt{2}}{2*1}=\frac{-12-8\sqrt{2}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+8\sqrt{2}}{2*1}=\frac{-12+8\sqrt{2}}{2} $
| 81x4+20=0 | | 81x5=20x | | (x+(20+x))2=280 | | 26=38-v | | 3(b+10)=27 | | 10.6x+112=271 | | (x+60)=(8x-10) | | 9=5-4r | | (x+5)=(4-25) | | 4m/10=-20 | | (x+5)=(4x-225) | | 9v+17=4(v+8) | | 36.000x+4000=51.000x+1500 | | -9(v-2)=-7v+24 | | -6x-12=2(x+2) | | -2x+8(x+4)=-28 | | 7u+4(u-5)=13 | | X^2x3x=70 | | W^2*3w=70 | | 0.05=x/220 | | -3x+2.4=5x-3 | | 52-v=159 | | 182=225-x | | -5x+121=2x+98 | | 108=-w+249 | | 0.6(x-2.5)=6 | | 58=8y-6 | | -27=5-8w | | 3x+0.29=4.16 | | x^2-18=65 | | Y=-4.5x^2+19x+300 | | 4.99x=100 |